An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.6 The Variance - Questions - Page 158: 10

Answer

$\color{blue}{\frac{5}{252}}$

Work Step by Step

$\begin{align*} E(Y) &= \int_{\mathbb{R}} y \cdot f_Y(y)\ dy \qquad [\ \text{Definition of}\ E(Y)\ ] \\ &= \int_0^1 y\cdot 5y^4\ dy \qquad \left[\ \text{since}\ f_Y(y)= 5y^4,\ 0\le y \le 1\ \right] \\ &= \int_0^1 5y^5\ dy \\ &= 5\left(\frac{y^6}{6}\ \right\vert_0^1 \\ &= \frac{5}{6}(1^6-0^6) \\ E(Y)&= \frac{5}{6} \\ \mu_Y &= \frac{5}{6} \end{align*}$ $\begin{align*} E(Y^2) &= \int_{\mathbb{R}} y^2 \cdot f_Y(y)\ dy \qquad [\ \text{Definition of}\ E(Y^2)\ ] \\ &= \int_0^1 y^2\cdot 5y^4\ dy \qquad \left[\ \text{since}\ f_Y(y)= 5y^4,\ 0\le y \le 1\ \right] \\ &= \int_0^1 5y^6\ dy \\ &= 5\left(\frac{y^7}{7}\ \right\vert_0^1 \\ &= \frac{5}{7}(1^7-0^7) \\ E(Y^2)&= \frac{5}{7} \end{align*}$ By Theorem 3.6.1, since $\mu_Y = \dfrac{5}{6}$ exists and $E(Y^2) = \dfrac{5}{7}$ is finite, $\begin{align*} \text{Var}(Y) &= E(Y^2) - \mu_Y^2 \\ &= \frac{5}{7} - \left(\frac{5}{6}\right)^2 \\ &= \frac{5}{7} - \frac{25}{36} \\ &= \frac{180-175}{252} \\ \color{blue}{\text{Var}(Y)}\ &\color{blue}{= \frac{5}{252}} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.