An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.6 The Variance - Questions - Page 158: 13

Answer

The minimum value of $g(a)$ is $E\left[(X-\mu)^2\right]$, the $\underline{\text{variance}}$ of $X$.

Work Step by Step

$\begin{align*} g(a) &= E\left[(X-a)^2\right] \\ &= E\left[\biggl((X-\mu) + (\mu -a)\biggr)^2\right] \\ &= E\left[(X-\mu)^2-2(X-\mu)(\mu-a) + (\mu-a)^2\right] \\ &= E\left[(X-\mu)^2\right] -E[2(X-\mu)(\mu-a)] + E\left[(\mu-a)^2\right] \quad [\ \text{Corollary 3.5.1, p. 148}\ ]\\ &= E\left[(X-\mu)^2\right] -2(\mu-a)E[(X-\mu)] + (\mu-a)^2 \quad [\ \text{Corollary 3.5.1, p. 148}\ ] \\ &= E\left[(X-\mu)^2\right] -2(\mu-a)(E[X]-\mu) + (\mu-a)^2 \quad [\ \text{Corollary 3.5.1, p. 148}\ ] \\ &= E\left[(X-\mu)^2\right] -2(\mu-a)(\mu-\mu) + (\mu-a)^2 \quad [\ \text{since}\ E[X]=\mu\ ] \\ &= E\left[(X-\mu)^2\right] -0 + (\mu-a)^2 \\ g(a) &= E\left[(X-\mu)^2\right] + (\mu-a)^2 \quad\quad\color{blue}{\text{(*** Eqn. 1 ***)}} \end{align*}$ Note from Equation 1 that $g(a)$ is minimum if $\mu=a$ (so that the second term on the right-hand side is zero). Thus, the minimum value of $g(a)$ is $g(a) = E\left[(X-\mu)^2\right]$, this being the $\underline{\text{variance}}$ of $X$ (see Definition 3.6.1, p. 154).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.