An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.6 The Variance - Questions - Page 158: 16

Answer

See explanation

Work Step by Step

$\underline{\text{To show}\ \small E\left(\dfrac{W-\mu}{\sigma} = 0\right):}$ Write $\small \dfrac{W-\mu}{\sigma} = \dfrac{1}{\sigma}W + \left(-\dfrac{\mu}{\sigma}\right)$ then use Corollary 3.5.1 (p. 148) with $\small a=\dfrac{1}{\sigma}$ and $\small b=-\dfrac{\mu}{\sigma}$ to get $\begin{align*} E\left(\dfrac{W-\mu}{\sigma}\right) &= E\left(\frac{1}{\sigma}W + \left(-\frac{\mu}{\sigma}\right)\right) \\ &= \frac{1}{\sigma}E(W) + \left(-\frac{\mu}{\sigma}\right) \quad [\ \text{Corollary 3.5.1}\ ] \\ &= \frac{1}{\sigma}\mu + \left(-\frac{\mu}{\sigma}\right) \\ \color{blue}{E\left(\dfrac{W-\mu}{\sigma}\right)}\ &\color{blue}{= 0} \end{align*}$ $\underline{\text{To show}\ \small \text{Var}\left(\dfrac{W-\mu}{\sigma} = 1\right):}$ Since we are given that $E(W)=0$ (so that $\mu =0$) and $\text{Var}(W)=1 \lt \infty$, by Theorem 3.6.1 (p. 155) $\begin{align*} \text{Var}(W) &= E(W^2) - \mu^2 \\ \sigma^2 &= E(W^2) - 0^2 \quad [\ \text{Theorem 3.6.1}\ ] \\ E(W^2) &= \sigma^2. \end{align*}$ Thus, $E(W^2) = \sigma^2$ and is finite. Now, write $\small\dfrac{W-\mu}{\sigma} = \dfrac{1}{\sigma}W + \left(-\dfrac{\mu}{\sigma}\right)$, then use the previous results (the fact that $\mu = 0$ and that $E(W^2) = \sigma^2 \lt \infty$) and Theorem 3.6.2 (p. 156) with $\small a=\dfrac{1}{\sigma}$ and $\small b=-\dfrac{\mu}{\sigma}$ to get $\begin{align*} \text{Var}\left(\dfrac{W-\mu}{\sigma}\right) &= \text{Var}\left(\frac{1}{\sigma}W + \left(-\frac{\mu}{\sigma}\right)\right) \\ &= \left(\frac{1}{\sigma}\right)^2\text{Var}(W) \quad [\ \text{Theorem 3.6.2}\ ]\\ &= \frac{1}{\sigma^2}\cdot \sigma^2 \\ \color{blue}{\text{Var}\left(\dfrac{W-\mu}{\sigma}\right)}\ &\color{blue}{= 1} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.