Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.2 - Addition and Subtraction Formulas - 7.2 Exercises - Page 552: 69

Answer

$\dfrac{-\cos x(1-\cos h)-\sin x\sin h}{h}$ or, $=\dfrac{-\cos x(1-\cos h)}{h}-\dfrac{\sin xsin h}{h}$

Work Step by Step

Use the identity$\cos (a+b)=\cos a \cos b-\sin a\sin b$ Let us consider $g(x)=\cos x$ and $g(x+h)=\cos (x+h)=\cos x \cos h-\sin x \sin h$ Now, $\dfrac{g(x+h)-g(x)}{h}=\dfrac{\cos x \cos h-\sin x \sin h-\cos x}{h}$ or, $=\dfrac{-\cos x(1-\cos h)-\sin x\sin h}{h}$ or, $=\dfrac{-\cos x(1-\cos h)}{h}-\dfrac{\sin xsin h}{h}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.