Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.2 - Addition and Subtraction Formulas - 7.2 Exercises - Page 552: 60

Answer

$\sqrt{2}\sin(x+\frac{7\pi}{4})$

Work Step by Step

Use the identity $A\sin x+B\cos x=k\sin(x+\phi)$, where $k=\sqrt{A^2+B^2}$ and $\phi$ satisfies $\cos \phi=\frac{A}{\sqrt{A^2+B^2}}$ and $\sin \phi=\frac{B}{\sqrt{A^2+B^2}}$. In this case, $k=\sqrt{1^2+(-1)^2}=\sqrt{1+1}=\sqrt{2}$. $\phi$ satisfies $\cos \phi=\frac{1}{\sqrt{1^2+(-1)^2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$ and $\sin \phi=\frac{-1}{\sqrt{1^2+(-1)^2}}=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}$. The only values $\phi$ in $[0, 2\pi)$ where $\cos \phi=\frac{\sqrt{2}}{2}$ are $\frac{\pi}{4}$ and $\frac{7\pi}{4}$, and of these two values, only $\phi=\frac{7\pi}{4}$ also satisfies $\sin\phi=-\frac{\sqrt{2}}{2}$, so $\phi=\frac{7\pi}{4}$. Therefore, $\sin x-\cos x=\sqrt{2}\sin(x+\frac{7\pi}{4})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.