Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.2 - Addition and Subtraction Formulas - 7.2 Exercises - Page 552: 53

Answer

$\dfrac{3-2\sqrt{14}}{\sqrt 7+6\sqrt 2}$

Work Step by Step

Let us consider $p=\sin^{-1} \dfrac{\sqrt 3}{4}$ and $q=\cos^{-1} \dfrac{1}{3}$ This gives $\sin p=\dfrac{\sqrt 3}{4} \implies \cos p=\dfrac{\sqrt7}{4}$ and $\cos q=\dfrac{1}{3} \implies \sin q=\dfrac{2\sqrt 2}{3}$ Now, $\tan(\sin^{-1} \dfrac{3}{4}-\cos^{-1} \dfrac{1}{3} )=\tan (p- q)$ This implies that $\tan (p- q)=\dfrac{\tan p-\tan q}{1+\tan p tan q}$ This gives: $\dfrac{\tan p-\tan q}{1+\tan p tan q}=\dfrac{\dfrac{3}{\sqrt 7}-2\sqrt 2}{1+\dfrac{6\sqrt 2}{\sqrt 7}}$ Hence, $\tan(\sin^{-1} \dfrac{3}{4}-\cos^{-1} \dfrac{1}{3} )=\dfrac{3-2\sqrt{14}}{\sqrt 7+6\sqrt 2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.