Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.2 - Addition and Subtraction Formulas - 7.2 Exercises - Page 552: 54

Answer

$\dfrac{2}{3}(1- \dfrac{1}{\sqrt 5})$

Work Step by Step

Let us consider $p=\cos^{-1} \dfrac{2}{3}$ and $q=\tan^{-1} \dfrac{1}{2}$ This gives $\cos p=\dfrac{2}{3} \implies \sin p=\sqrt{1-\cos^2 p}=\dfrac{\sqrt 5}{3}$ and $\tan q=\dfrac{1}{2} \implies \sin q=\dfrac{1}{\sqrt 5}$; $\cos q=\dfrac{2}{\sqrt 3}$ Now, $\sin(\cos^{-1} \dfrac{2}{3}-\tan^{-1} \dfrac{1}{2} )=\sin (p- q)$ This implies that $\sin (p- q)=\sin p \cos q-\cos p \cos q$ $\sin(\cos^{-1} \dfrac{2}{3}-\tan^{-1} \dfrac{1}{2})=(\dfrac{\sqrt 5}{3})(\dfrac{2}{\sqrt 5})-(\dfrac{2}{3})(\dfrac{1}{\sqrt 5})$ Hence, $\sin(\cos^{-1} \dfrac{2}{3}-\tan^{-1} \dfrac{1}{2})=\dfrac{2}{3}(1- \dfrac{1}{\sqrt 5})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.