Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.2 - Addition and Subtraction Formulas - 7.2 Exercises - Page 552: 59

Answer

$2\sin(x+\frac{5\pi}{6})$

Work Step by Step

Use the identity $A\sin x+B\cos x=k\sin(x+\phi)$, where $k=\sqrt{A^2+B^2}$ and $\phi$ satisfies $\cos \phi=\frac{A}{\sqrt{A^2+B^2}}$ and $\sin \phi=\frac{B}{\sqrt{A^2+B^2}}$. In this case, $k=\sqrt{(-\sqrt{3})^2+1^2}=\sqrt{3+1}=\sqrt{4}=2$. $\phi$ satisfies $\cos \phi=\frac{-\sqrt{3}}{\sqrt{(-3)^2+1^2}}=-\frac{\sqrt{3}}{2}$ and $\sin \phi=\frac{1}{\sqrt{(-3)^2+1^2}}=\frac{1}{2}$. The only values $\phi$ in $[0, 2\pi)$ where $\cos \phi=-\frac{\sqrt{3}}{2}$ are $\frac{5\pi}{6}$ and $\frac{7\pi}{6}$, and of these two values, only $\phi=\frac{5\pi}{6}$ also satisfies $\sin\phi=\frac{1}{2}$, so $\phi=\frac{5\pi}{6}$. Therefore, $-\sqrt{3}\sin x+\cos x=2\sin(x+\frac{5\pi}{6})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.