Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 2 - Section 2.1 - Functions - Exercises - Page 157: 48

Answer

$-\dfrac{2}{(a-1)(a+h-1)}$

Work Step by Step

$f(x)=\dfrac{2x}{x-1}$ Find $f(a)$ by substituting $x$ with $a$ $f(a)=\dfrac{2a}{a-1}$ Find $f(a+h)$ by substituting $x$ with $a+h$: $f(a+h)=\dfrac{2(a+h)}{a+h-1}$ We have $f(a)$ and $f(a+h)$, substitute them in the expression $\dfrac{f(a+h)-f(a)}{h}$ and simplify: $\dfrac{f(a+h)-f(a)}{h}=\dfrac{\dfrac{2(a+h)}{a+h-1}-\dfrac{2a}{a-1}}{h}=...$ Evaluate the substraction in the numerator and simplify: $...=\dfrac{\dfrac{2(a+h)(a-1)-2a(a+h-1)}{(a-1)(a+h-1)}}{h}=...$ $...\dfrac{\dfrac{2(a^{2}-a+ah-h)-2a^{2}-2ah+2a}{(a-1)(a+h-1)}}{h}=...$ $...=\dfrac{\dfrac{2a^{2}-2a+2ah-2h-2a^{2}-2ah+2a}{(a-1)(a+h-1)}}{h}=...$ $...\dfrac{\dfrac{-2h}{(a-1)(a+h-1)}}{h}=-\dfrac{2}{(a-1)(a+h-1)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.