Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Review - Exercises - Page 891: 79

Answer

$1 -6x^{2}+15x^{4}-20x^{6}+15x^{8}-6x^{10}+x^{12}$

Work Step by Step

The Binomial Theorem$:$ $(a+b)^{n}=\left(\begin{array}{l} n\\ 0 \end{array}\right)a^{n}+\left(\begin{array}{l} n\\ 1 \end{array}\right)a^{n-1}b+\left(\begin{array}{l} n\\ 2 \end{array}\right)a^{n-2}b^{2}+\cdots+\left(\begin{array}{l} n\\ n \end{array}\right)b^{n}$ ---------------- $\left(\begin{array}{l} 6\\ 0 \end{array}\right)1^{6}\cdot(-x^{2})^{0}=1\cdot 1\cdot 1=1$ $\left(\begin{array}{l} 6\\ 1 \end{array}\right)1^{5}\cdot(-x^{2})^{1}=6\cdot 1\cdot(-x^{2})=-6x^{2}$ $\displaystyle \left(\begin{array}{l} 6\\ 2 \end{array}\right)1^{4}\cdot(-x^{2})^{2}=\frac{6(5)}{1(2)}\cdot x^{4}=15x^{4}$ $\displaystyle \left(\begin{array}{l} 6\\ 3 \end{array}\right)1^{3}\cdot(-x^{2})^{3}=\frac{6(5)(4)}{1(2)(3)}\cdot(-x^{2})^{3}=-20x^{6}$ $\displaystyle \left(\begin{array}{l} 6\\ 4 \end{array}\right)1^{2}\cdot(-x^{2})^{4}=\frac{6(5)(4)(3)}{1(2)(3)(4)}\cdot(-x^{2})^{4}=15x^{8}$ $\left(\begin{array}{l} 6\\ 5 \end{array}\right)1^{1}\cdot(-x^{2})^{5}=6(-1)\cdot x^{10}=-6x^{10}$ $\left(\begin{array}{l} 6\\ 6 \end{array}\right)1^{0}\cdot(-x^{2})^{6}=1\cdot x^{12}=x^{12}$ $(1-x^{2})=1-6x^{2}+15x^{4}-20x^{6}+15x^{8}-6x^{10}+x^{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.