Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Review - Exercises - Page 891: 61

Answer

13 terms are in the sum.

Work Step by Step

The nth partial sum od an arithmetic sequence $S_{n}=\displaystyle \sum_{k=1}^{n}[a+(k-1)d]$ is given by either of the following equivalent formulas: 1. $S_{n}=\displaystyle \frac{n}{2}[2a+(n-1)d]\qquad $2. $S_{n}=n(\displaystyle \frac{a+a_{n}}{2})$ -------------------------- $a = 7$ and $d = 3$. From $S_{n}=325=\displaystyle \frac{n}{2}[2a+(n-1)d]$, we find n: $325=\displaystyle \frac{n}{2}[14+3(n-1)]$ $325=\displaystyle \frac{n}{2}(11+3n) \quad/\times 2$ $650 =3n^{2}+11n$ $3n^{2}+11n -650=0$ Quadratic formula: $n=\displaystyle \frac{-11\pm\sqrt{121+4(3)(650}}{2(3)}=\frac{-11\pm 89}{6}$ $n=\displaystyle \frac{78}{6}=13$ or $n=-\displaystyle \frac{50}{3}$ Discarding the negative solution, 13 terms are in the sum.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.