Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Review - Exercises - Page 891: 70

Answer

See explanations.

Work Step by Step

Step 1. Prove that the statement is true for $n=1$: $7^1-1=6$ is divisible by 6, thus it is true for $n=1$ Step 2. Assume the statement is true for $n=k$: we have $7^k-1=6m$ is divisible by 6, where m is an integer. Step 3. Prove that it is also true for $n=k+1$: $7^{k+1}-1=7\times7^k-1=7(6m+1)-1=42m+6=6(7m+1)$ is also divisible by 6. Thus, the statement is also true for $n=k+1$ Step 4. With mathematical induction, we have proved that the statement is true for all natural numbers n.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.