Answer
$vertical$, $(0,-a)$, $(0,a)$, $c=\sqrt {a^2+b^2}$, $(0,-4)$, $(0,4)$, $(0,-5)$, $(0,5)$
Work Step by Step
1. The hyperbola $\frac{y^2}{a^2}-\frac{x^2}{b^2}=1 $ will have a $vertical$ transverse axis with vertices at $(0,-a)$ and $(0,a)$, and the foci position can be found with $c=\sqrt {a^2+b^2}$ at $(0,-c)$ and $(0,c)$
2. For the example of $\frac{y^2}{4^2}-\frac{x^2}{3^2}=1 $, the vertices will be at $(0,-4)$ and $(0,4)$, calculated $c=\sqrt {4^2+3^2}=5$, the foci will be at $(0,-5)$ and $(0,5)$