Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 10 - Section 10.3 - Matrices and Systems of Linear Equations - 10.3 Exercises - Page 710: 54

Answer

No solution.

Work Step by Step

Step 1. Establish the augmented matrix of the system and use the Gauss Eliminations method: $\begin{vmatrix} 3 & 1 & 0 & 2 \\ -4 & 3 & 1 & 4\\2 & 5 & 1 & 0 \end{vmatrix} \begin{array}(R_3/2\leftrightarrow R_1 \\.\\.\\ \end{array}$ Step 2. divide row 3 by 2 and exchange it with row 1: $\begin{vmatrix} 1 & 5/2 & 1/2 & 0 \\ -4 & 3 & 1 & 4\\3 & 1 & 0 & 2 \end{vmatrix} \begin{array} . \\R_2+4R_1\to R_2\\2(R_3-3R_1)\to R_3\end{array}$ Step 3. Do the operations given on the right side of the matrix. $\begin{vmatrix} 1 & 5/2 & 1/2 & 0 \\ 0 & 13 & 3 & 4\\0 & -13 & -3 & 4 \end{vmatrix} \begin{array} . \\.\\R_3+R_2\to R_3\end{array}$ Step 4. Add the second and third rows: $\begin{vmatrix} 1 & 5/2 & 1/2 & 0 \\ 0 & 13 & 3 & 4\\0 & 0 & 0 & 8 \end{vmatrix} \begin{array} . \\.\\.\end{array}$ Step 5. Because the third row gives $0=8$, this system has no solution.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.