Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 13 - A Preview of Calculus: The Limit, Derivative, and Integral of a Function - Chapter Review - Review Exercises - Page 925: 6



Work Step by Step

We will use the following limit rules for this problem: $\ Rule \ - \ 1 : \lim\limits_{x \to a} A(x)=A(a)$ $\ Rule \ - \ 2: \lim\limits_{x \to a} \dfrac{A(x)}{B(x)}=\dfrac{\lim\limits_{x \to a} A(x)}{\lim\limits_{x \to a} B(x)}$ Apply the given rules: $\lim\limits_{x\to -1}\dfrac{x^2+x+2}{x^2-9}=\dfrac{\lim\limits_{x\to -1} (x^2+x+2)}{\lim\limits_{x\to -1}(x^2-9) } \\=\dfrac{(-1)^2+(-1)+2}{(-1)^2-9}\\=-\dfrac{1}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.