#### Answer

$\color{blue}{\dfrac{3x+y}{2x-y}}$

#### Work Step by Step

Factor out $-1$ in the denominator of the subtrahend to obtain:
$=\dfrac{x+y}{2x-y} - \dfrac{2x}{-1(-y+2x)}
\\=\dfrac{x+y}{2x-y} - \dfrac{-2x}{2x-y}$
The expressions are similar so subtract the numerators and copy the denominator to obtain:
$=\dfrac{x+y-(-2x)}{2x-y}
\\=\dfrac{x+y+2x}{2x-y}
\\=\color{blue}{\dfrac{3x+y}{2x-y}}$