Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 7 - Trigonometric Identities and Equations - 7.5 Inverse Circular Functions - 7.5 Exercises - Page 710: 99

Answer

$$\frac{{4\sqrt {{u^2} - 4} }}{{{u^2}}}$$

Work Step by Step

$$\eqalign{ & \sin \left( {2{{\sec }^{ - 1}}\frac{u}{2}} \right) \cr & {\text{From the triangle we have that}} \cr & \sec \theta = \frac{u}{2} \cr & \theta = {\sec ^{ - 1}}\frac{u}{2} \cr & \sin \left( {2{{\sec }^{ - 1}}\frac{u}{2}} \right) = \sin 2\theta \cr & \sin \left( {2{{\sec }^{ - 1}}\frac{u}{2}} \right) = 2\sin \theta \cos \theta \cr & \sin \left( {2{{\sec }^{ - 1}}\frac{u}{2}} \right) = 2\left( {\frac{{{\text{opposite side}}}}{{{\text{hypotenuse}}}}} \right)\left( {\frac{{{\text{adjacent side}}}}{{{\text{hypotenuse}}}}} \right) \cr & \sin \left( {2{{\sec }^{ - 1}}\frac{u}{2}} \right) = 2\left( {\frac{{\sqrt {{u^2} - 4} }}{u}} \right)\left( {\frac{{\text{2}}}{u}} \right) \cr & \sin \left( {2{{\sec }^{ - 1}}\frac{u}{2}} \right) = \frac{{4\sqrt {{u^2} - 4} }}{{{u^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.