Answer
$$\frac{3}{{\sqrt {9 - {u^2}} }}$$
Work Step by Step
$$\eqalign{
& \csc \left( {\arctan \frac{{\sqrt {9 - {u^2}} }}{u}} \right) \cr
& {\text{From the triangle we have that}} \cr
& \tan \theta = \frac{{\sqrt {9 - {u^2}} }}{u} \cr
& \theta = \arctan \frac{{\sqrt {9 - {u^2}} }}{u} \cr
& \csc \left( {\arctan \frac{{\sqrt {9 - {u^2}} }}{u}} \right) = \csc \theta \cr
& \csc \left( {\arctan \frac{{\sqrt {9 - {u^2}} }}{u}} \right) = \frac{{{\text{hypotenuse}}}}{{{\text{opposite side}}}} \cr
& \csc \left( {\arctan \frac{{\sqrt {9 - {u^2}} }}{u}} \right) = \frac{3}{{\sqrt {9 - {u^2}} }} \cr} $$