Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 7 - Trigonometric Identities and Equations - 7.5 Inverse Circular Functions - 7.5 Exercises - Page 710: 103

Answer

$$\frac{{{\text{2}}\sqrt {4 - {u^2}} }}{{4 - {u^2}}}$$

Work Step by Step

$$\eqalign{ & \sec \left( {\operatorname{arccot} \frac{{\sqrt {4 - {u^2}} }}{u}} \right) \cr & {\text{From the triangle we have that}} \cr & \cot \theta = \frac{{\sqrt {4 - {u^2}} }}{u} \cr & \theta = \operatorname{arccot} \frac{{\sqrt {4 - {u^2}} }}{u} \cr & \sec \left( {\operatorname{arccot} \frac{{\sqrt {4 - {u^2}} }}{u}} \right) = \sec \theta \cr & \sec \left( {\operatorname{arccot} \frac{{\sqrt {4 - {u^2}} }}{u}} \right) = \frac{{{\text{hypotenuse}}}}{{{\text{adjacent side}}}} \cr & \sec \left( {\operatorname{arccot} \frac{{\sqrt {4 - {u^2}} }}{u}} \right) = \frac{{\text{2}}}{{\sqrt {4 - {u^2}} }} \cr & {\text{Rationalizing}} \cr & \sec \left( {\operatorname{arccot} \frac{{\sqrt {4 - {u^2}} }}{u}} \right) = \frac{{\text{2}}}{{\sqrt {4 - {u^2}} }} \times \frac{{\sqrt {4 - {u^2}} }}{{\sqrt {4 - {u^2}} }} \cr & \sec \left( {\operatorname{arccot} \frac{{\sqrt {4 - {u^2}} }}{u}} \right) = \frac{{{\text{2}}\sqrt {4 - {u^2}} }}{{4 - {u^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.