Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 7 - Trigonometric Identities and Equations - 7.5 Inverse Circular Functions - 7.5 Exercises - Page 710: 101

Answer

$$\frac{{u\sqrt 2 }}{2}$$

Work Step by Step

$$\eqalign{ & \tan \left( {{{\sin }^{ - 1}}\frac{u}{{\sqrt {{u^2} + 2} }}} \right) \cr & {\text{From the triangle we have that}} \cr & \sin \theta = \frac{u}{{\sqrt {{u^2} + 2} }} \cr & \theta = {\sin ^{ - 1}}\frac{u}{{\sqrt {{u^2} + 2} }} \cr & \tan \left( {{{\sin }^{ - 1}}\frac{u}{{\sqrt {{u^2} + 2} }}} \right) = \tan \theta \cr & \tan \left( {{{\sin }^{ - 1}}\frac{u}{{\sqrt {{u^2} + 2} }}} \right) = \frac{{{\text{opposite side}}}}{{{\text{adjacent side}}}} \cr & \tan \left( {{{\sin }^{ - 1}}\frac{u}{{\sqrt {{u^2} + 2} }}} \right) = \frac{u}{{\sqrt 2 }} = \frac{{u\sqrt 2 }}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.