#### Answer

Option $(B)$
$\color{blue}{x=\left\{\frac{-5+\sqrt7}{2}, \frac{-5-\sqrt7}{2}\right\}}$

#### Work Step by Step

RECALL:
If $x^2=a$, then $x = \pm \sqrt{a}$
Among the given equation, the one in Option (B) is set up for direct use of the square root property.
Using the property gives:
$\sqrt{(2x+5)^2}=\pm \sqrt{7}
\\2x+5 = \pm \sqrt{7}$
Subtract $5$ to both sides:
$2x=-5 \pm \sqrt{7}$
Divide both sides by $2$:
$x = \dfrac{-5\pm\sqrt{7}}{2}$
Thus, $\color{blue}{x=\left\{\frac{-5+\sqrt7}{2}, \frac{-5-\sqrt7}{2}\right\}}$.