Answer
See graph, domain $[\frac{23}{4},\infty)$, range $(-\infty,\infty)$
![](https://gradesaver.s3.amazonaws.com/uploads/solution/99fe0b86-ef7f-4765-b6a5-c0b0636eb657/result_image/1585401192.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJVAXHCSURVZEX5QQ%2F20250117%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250117T172931Z&X-Amz-Expires=900&X-Amz-SignedHeaders=host&X-Amz-Signature=fa1ac7f5b6ba097f7c92af321244ee49bb366dfa6cf43ecc703b04e68349a0e1)
Work Step by Step
Step 1. Given the parametric equations $x=t^2-t+6, y=3t$, we can graph the plane curve as shown in the figure.
Step 2. We can find the vertex at $(\frac{23}{4},\frac{3}{2})$ and determine the domain as $[\frac{23}{4},\infty)$, the range as $(-\infty,\infty)$