Answer
focus $(0,3)$, directrix $y=-3$
See graph.
![](https://gradesaver.s3.amazonaws.com/uploads/solution/a25b3397-300a-453e-a693-24abd243114d/result_image/1585229803.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJVAXHCSURVZEX5QQ%2F20250115%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250115T190640Z&X-Amz-Expires=900&X-Amz-SignedHeaders=host&X-Amz-Signature=edbe74d1ddbb3cb446f0b4d7d2050ca9ce8ba6b59a3368edb4a93c1aba542b26)
Work Step by Step
Step 1. Given $x^2=12y$, we have $4p=12$ and $p=3$ with the parabola opening upwards and vertex at $(0,0)$.
Step 2. We can find the focus at $(0,3)$ and directrix as $y=-3$
Step 3. We can graph the parabola as shown in the figure.