Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.5 - Determinants and Cramer's Rule - Exercise Set - Page 947: 80


See the verification below.

Work Step by Step

Using the trigonometric identity $\sin \left( 2x \right)=2\sin x\cos x$ and ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ we will solve the provided identity. $\begin{align} & \sin \left( 2x \right)=2\sin x\cos x+\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right) \\ & ={{\sin }^{2}}x+2\sin x\cos x+{{\cos }^{2}}x \end{align}$ Using the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we will solve the provided expression ${{\left( \sin x+\cos x \right)}^{2}}$ ${{\left( \sin x+\cos x \right)}^{2}}={{\sin }^{2}}x+2\sin x\cos x+{{\cos }^{2}}x$ Thus, $\sin (2x)+1={{\left( \sin x+\cos x \right)}^{2}}$ Hence, $\sin \left( 2x \right)+1={{\left( \sin x+\cos x \right)}^{2}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.