Answer
The determinant is $48$.
Work Step by Step
This is a fourth order determinant, so in order to calculate this determinant, split it into a determinant of order 3. Expand along the second column as follows,
$\begin{align}
& \left| \begin{matrix}
1 & -3 & 2 & 0 \\
-3 & -1 & 0 & -2 \\
2 & 1 & 3 & 1 \\
2 & 0 & -2 & 0 \\
\end{matrix} \right|={{\left( -1 \right)}^{1+2}}\left( -3 \right)\left| \begin{matrix}
-3 & 0 & -2 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|+{{\left( -1 \right)}^{2+2}}\left( -1 \right)\left| \begin{matrix}
1 & 2 & 0 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|+{{\left( -1 \right)}^{3+2}}1\left| \begin{matrix}
1 & 2 & 0 \\
-3 & 0 & -2 \\
2 & -2 & 0 \\
\end{matrix} \right| \\
& ={{\left( -1 \right)}^{3}}\left( -3 \right)\left| \begin{matrix}
-3 & 0 & -2 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|+{{\left( -1 \right)}^{4}}\left( -1 \right)\left| \begin{matrix}
1 & 2 & 0 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|+{{\left( -1 \right)}^{5}}1\left| \begin{matrix}
1 & 2 & 0 \\
-3 & 0 & -2 \\
2 & -2 & 0 \\
\end{matrix} \right| \\
& =\left( -1 \right)\left( -3 \right)\left| \begin{matrix}
-3 & 0 & -2 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|+\left( 1 \right)\left( -1 \right)\left| \begin{matrix}
1 & 2 & 0 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|+\left( -1 \right)1\left| \begin{matrix}
1 & 2 & 0 \\
-3 & 0 & -2 \\
2 & -2 & 0 \\
\end{matrix} \right| \\
& =3\left| \begin{matrix}
-3 & 0 & -2 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|+\left( -1 \right)\left| \begin{matrix}
1 & 2 & 0 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|+\left( -1 \right)\left| \begin{matrix}
1 & 2 & 0 \\
-3 & 0 & -2 \\
2 & -2 & 0 \\
\end{matrix} \right|
\end{align}$
Now calculate each third order determinant as follows:
First consider,
$\begin{align}
& 3\left| \begin{matrix}
-3 & 0 & -2 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|=3\left( -3\left| \begin{matrix}
3 & 1 \\
-2 & 0 \\
\end{matrix} \right|-2\left| \begin{matrix}
0 & -2 \\
-2 & 0 \\
\end{matrix} \right|+2\left| \begin{matrix}
0 & -2 \\
3 & 1 \\
\end{matrix} \right| \right) \\
& =3\left( -3\left[ 3\left( 0 \right)-\left( -2 \right)1 \right]-2\left[ 0\left( 0 \right)-\left( -2 \right)\left( -2 \right) \right]+2\left[ 0\left( 1 \right)-3\left( -2 \right) \right] \right) \\
& =3\left( \left( -3 \right)\left( 2 \right)-2\left( -4 \right)+2\left( 6 \right) \right) \\
& =42
\end{align}$
Next consider the second determinant,
$\begin{align}
& \left| \begin{matrix}
1 & 2 & 0 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|=\left( -1 \right)\left( 1\left| \begin{matrix}
3 & 1 \\
-2 & 0 \\
\end{matrix} \right|-2\left| \begin{matrix}
2 & 0 \\
-2 & 0 \\
\end{matrix} \right|+2\left| \begin{matrix}
2 & 0 \\
3 & 1 \\
\end{matrix} \right| \right) \\
& =\left( -1 \right)\left( 1\left[ 3\left( 0 \right)-\left( -2 \right)1 \right]-2\left[ 2\left( 0 \right)-\left( -2 \right)\left( 0 \right) \right]+2\left[ 2\left( 1 \right)-3\left( 0 \right) \right] \right) \\
& =\left( -1 \right)\left[ 1\left( 2 \right)-2\left( 0 \right)+2\left( 2 \right) \right] \\
& =-6
\end{align}$
At last consider the third determinant,
$\begin{align}
& \left( -1 \right)\left| \begin{matrix}
1 & 2 & 0 \\
-3 & 0 & -2 \\
2 & -2 & 0 \\
\end{matrix} \right|=\left( -1 \right)\left( 1\left| \begin{matrix}
0 & -2 \\
-2 & 0 \\
\end{matrix} \right|-\left( -3 \right)\left| \begin{matrix}
2 & 0 \\
-2 & 0 \\
\end{matrix} \right|+2\left| \begin{matrix}
2 & 0 \\
0 & -2 \\
\end{matrix} \right| \right) \\
& =\left( -1 \right)\left( 1\left[ 0\left( 0 \right)-\left( -2 \right)\left( -2 \right) \right]-\left( -3 \right)\left[ 2\left( 0 \right)-\left( -2 \right)0 \right]+2\left[ 2\left( -2 \right)-0\left( 0 \right) \right] \right) \\
& =\left( -1 \right)\left[ -1\left( 4 \right)-\left( -3 \right)\left( 0 \right)+2\left( -4 \right) \right] \\
& =12
\end{align}$
Now put these values in the original equations and simplify:
$\begin{align}
& \left| \begin{matrix}
1 & -3 & 2 & 0 \\
-3 & -1 & 0 & -2 \\
2 & 1 & 3 & 1 \\
2 & 0 & -2 & 0 \\
\end{matrix} \right|=3\left| \begin{matrix}
-3 & 0 & -2 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|+\left| \begin{matrix}
1 & 2 & 0 \\
2 & 3 & 1 \\
2 & -2 & 0 \\
\end{matrix} \right|+\left( -1 \right)\left| \begin{matrix}
1 & 2 & 0 \\
-3 & 0 & -2 \\
2 & -2 & 0 \\
\end{matrix} \right| \\
& =42-6+12 \\
& =48
\end{align}$