Answer
a. $\frac{5\pi}{3}$.
b. See figure.
c. $\frac{\pi}{3}$
![](https://gradesaver.s3.amazonaws.com/uploads/solution/4aa6181f-97bd-4f02-a75d-ec7fad1cfefd/result_image/1583715224.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJVAXHCSURVZEX5QQ%2F20250113%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250113T200504Z&X-Amz-Expires=900&X-Amz-SignedHeaders=host&X-Amz-Signature=c2b8b5992a701256e045a7b6ebbb2722aad6201963aab14feaeecc59f9277b35)
Work Step by Step
a. Given the angle $\frac{11\pi}{3}=\frac{6\pi+5\pi}{3}=2\pi+\frac{5\pi}{3}$, we see that the positive angle that is less than $ 2\pi$ and is co-terminal with the given angle is $\frac{5\pi}{3}$.
b. See figure.
c. The reference angle can be found as $2\pi-\frac{5\pi}{3}=\frac{\pi}{3}$ (angle with respect to the x-axis)