Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Mid-Chapter Check Point - Page 381: 15


The zeros of $f\left( x \right)={{x}^{4}}-5{{x}^{2}}+4$ are $1,-1,2,-2$.

Work Step by Step

Let’s first equate $f\left( x \right)$ to $0$ as below. Then, $\begin{align} & {{x}^{4}}-5{{x}^{2}}+4=0 \\ & {{x}^{4}}-4{{x}^{2}}-{{x}^{2}}+4=0 \\ & {{x}^{2}}\left( {{x}^{2}}-4 \right)-\left( {{x}^{2}}-4 \right)=0 \\ & \left( {{x}^{2}}-4 \right)\left( {{x}^{2}}-1 \right)=0 \end{align}$ Now, by using the formula $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$ , the polynomial can be written as: $\left( x-1 \right)\left( x+1 \right)\left( x-2 \right)\left( x+2 \right)=0$ Put each factor equal to $0$. So, $\left( x-1 \right)=0$ Or, $\left( x+1 \right)=0$ Or, $\left( x-2 \right)=0$ Or, $\left( x+2 \right)=0$ The above equations provide the values of x as: $x=1,-1,2,-2$
Small 1569549529
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.