Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.6 - Page 304: 44

Answer

See explanation

Work Step by Step

Below is a standard induction proof, using the recursive definition of summation, the triangle inequality, and the definition of absolute value, to show that for all positive integers \(n\), \[ \biggl|\;\sum_{i=1}^n a_i\biggr| \;\le\; \sum_{i=1}^n |a_i|, \] where \(a_1,\dots,a_n\) are real numbers. --- ## 1. Recursive Definition of Summation Recall that for a positive integer \(n\), \[ \sum_{i=1}^n a_i \;=\; \begin{cases} a_1, & \text{if }n=1,\\ \Bigl(\sum_{i=1}^{n-1} a_i\Bigr) \;+\; a_n, & \text{if }n>1. \end{cases} \] --- ## 2. Proof by Mathematical Induction ### Base Case \((n=1)\) When \(n=1\), \[ \bigl|\sum_{i=1}^1 a_i\bigr| = |a_1|, \quad \sum_{i=1}^1 |a_i| = |a_1|. \] Hence \[ \bigl|\sum_{i=1}^1 a_i\bigr| = |a_1| \le |a_1|, \] so the statement holds for \(n=1\). ### Inductive Step Assume the statement holds for some positive integer \(n\). In other words, assume \[ \biggl|\;\sum_{i=1}^n a_i\biggr| \;\le\; \sum_{i=1}^n |a_i|. \] We want to prove it then holds for \(n+1\). By the recursive definition of summation, \[ \sum_{i=1}^{n+1} a_i \;=\; \Bigl(\sum_{i=1}^n a_i\Bigr) \;+\; a_{n+1}. \] Using the triangle inequality \(\,\bigl|x+y\bigr|\le|x|+|y|\), we get \[ \biggl|\;\sum_{i=1}^{n+1} a_i\biggr| \;=\; \bigl|\bigl(\sum_{i=1}^n a_i\bigr) + a_{n+1}\bigr| \;\le\; \biggl|\sum_{i=1}^n a_i\biggr|\;+\;|a_{n+1}|. \] By the inductive hypothesis, \[ \biggl|\sum_{i=1}^n a_i\biggr| \;\le\; \sum_{i=1}^n |a_i|. \] Hence, \[ \biggl|\;\sum_{i=1}^{n+1} a_i\biggr| \;\le\; \sum_{i=1}^n |a_i|\;+\;|a_{n+1}| \;=\; \sum_{i=1}^{n+1} |a_i|. \] Thus the statement holds for \(n+1\). By mathematical induction, it is true for all positive integers \(n\). --- ## 3. Conclusion We have shown, for all \(n \ge 1\), \[ \boxed{ \biggl|\;\sum_{i=1}^n a_i\biggr| \;\le\; \sum_{i=1}^n |a_i|. } \] This completes the proof via the recursive definition of summation, the triangle inequality, and induction.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.