Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.6 - Page 304: 41

Answer

See explanation

Work Step by Step

Below is a standard proof by induction (using the recursive definition of summation) of the generalized distributive law: **Claim.** For any positive integer \(n\) and any real numbers \(a_1,\dots,a_n\) and \(c\), \[ \sum_{i=1}^n \bigl(c\,a_i\bigr) \;=\; c \,\sum_{i=1}^n a_i. \] --- ## 1. Recursive Definition of Summation We define, for a positive integer \(n\): \[ \sum_{i=1}^n a_i \;=\; \begin{cases} a_1, & \text{if }n=1,\\[6pt] \Bigl(\sum_{i=1}^{n-1} a_i\Bigr) + a_n, & \text{if }n>1. \end{cases} \] --- ## 2. Proof by Induction ### **Base Case** \((n=1)\) For \(n=1\), we have \[ \sum_{i=1}^1 \bigl(c\,a_i\bigr) = c\,a_1. \] Also, \[ c\,\sum_{i=1}^1 a_i = c\,a_1. \] Thus both sides agree (both are \(c\,a_1\)), so the statement holds for \(n=1\). ### **Inductive Step** Assume the statement holds for some positive integer \(n\). In other words, assume \[ \sum_{i=1}^n \bigl(c\,a_i\bigr) \;=\; c\,\sum_{i=1}^n a_i. \] We must prove it then holds for \(n+1\). Using the recursive definition of summation for \(n+1\): \[ \sum_{i=1}^{n+1} \bigl(c\,a_i\bigr) \;=\; \Bigl(\sum_{i=1}^{n} \bigl(c\,a_i\bigr)\Bigr) + \bigl(c\,a_{n+1}\bigr). \] By the inductive hypothesis, \[ \sum_{i=1}^{n} \bigl(c\,a_i\bigr) = c\,\sum_{i=1}^n a_i. \] Hence, \[ \sum_{i=1}^{n+1} \bigl(c\,a_i\bigr) = c\,\sum_{i=1}^n a_i \;+\; c\,a_{n+1} = c\,\Bigl(\sum_{i=1}^n a_i + a_{n+1}\Bigr) = c\,\sum_{i=1}^{n+1} a_i, \] where in the last step we again used the recursive definition of summation for \(\sum_{i=1}^{n+1} a_i\). Thus the statement is true for \(n+1\). By the principle of mathematical induction, the equality \[ \sum_{i=1}^n (c\,a_i) = c\,\sum_{i=1}^n a_i \] holds for all positive integers \(n\). --- ## 3. Conclusion This completes the proof that, for all \(n \ge 1\), \[ \sum_{i=1}^n \bigl(c\,a_i\bigr) \;=\; c \,\sum_{i=1}^n a_i, \] using the recursive definition of summation and mathematical induction.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.