Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.6 - Page 304: 43

Answer

See explanation

Work Step by Step

Below is a standard induction proof using the *recursive definition of product* that shows \[ \prod_{i=1}^n (c\,a_i) \;=\; c^n \,\prod_{i=1}^n a_i \quad \text{for all positive integers }n. \] --- ## 1. Recursive Definition of Product For a positive integer \(n\), we define \[ \prod_{i=1}^n x_i \;=\; \begin{cases} x_1, & \text{if }n=1,\\[6pt] \Bigl(\prod_{i=1}^{n-1} x_i\Bigr)\,\cdot\,x_n, & \text{if }n>1. \end{cases} \] --- ## 2. Proof by Induction ### Base Case \((n=1)\) When \(n=1\), \[ \prod_{i=1}^1 (c\,a_i) = c\,a_1, \] while \[ c^1 \,\prod_{i=1}^1 a_i = c \cdot a_1. \] Clearly these are equal. So the statement holds for \(n=1\). ### Inductive Step Assume the statement is true for some positive integer \(n\). That is, assume \[ \prod_{i=1}^n (c\,a_i) \;=\; c^n \,\prod_{i=1}^n a_i. \] We must prove it for \(n+1\). Using the recursive definition of product on \(\{c\,a_i\}\): \[ \prod_{i=1}^{n+1} (c\,a_i) \;=\; \Bigl(\prod_{i=1}^{n} (c\,a_i)\Bigr)\;\cdot\;\bigl(c\,a_{n+1}\bigr). \] By the inductive hypothesis, the portion in parentheses is \[ \prod_{i=1}^{n} (c\,a_i) \;=\; c^n \,\prod_{i=1}^n a_i. \] Hence \[ \prod_{i=1}^{n+1} (c\,a_i) \;=\; \Bigl(c^n \,\prod_{i=1}^n a_i\Bigr)\;\cdot\;\bigl(c\,a_{n+1}\bigr) \;=\; c^n \,c \;\Bigl(\prod_{i=1}^n a_i\Bigr)\,a_{n+1} \;=\; c^{n+1}\,\prod_{i=1}^{n+1} a_i. \] Thus the identity holds for \(n+1\). By mathematical induction, it is true for all positive integers \(n\). --- ## 3. Conclusion We have shown, using the recursive definition of product and induction, that for all \(n \ge 1\), \[ \boxed{\prod_{i=1}^n (c\,a_i) \;=\; c^n \,\prod_{i=1}^n a_i.} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.