Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.6 - Page 304: 42

Answer

See explanation

Work Step by Step

Below is a standard induction proof using the *recursive definition of product* that shows \[ \prod_{i=1}^n (a_i\,b_i) \;=\; \Bigl(\prod_{i=1}^n a_i\Bigr)\,\Bigl(\prod_{i=1}^n b_i\Bigr) \quad \text{for all positive integers }n. \] --- ## 1. Recursive Definition of Product For a positive integer \(n\), we define \[ \prod_{i=1}^n x_i \;=\; \begin{cases} x_1, & \text{if }n=1,\\[6pt] \Bigl(\prod_{i=1}^{n-1} x_i\Bigr)\,\cdot\,x_n, & \text{if }n>1. \end{cases} \] --- ## 2. Proof by Induction ### Base Case \((n=1)\) When \(n=1\), \[ \prod_{i=1}^1 (a_i b_i) = a_1 b_1, \] while \[ \Bigl(\prod_{i=1}^1 a_i\Bigr)\,\Bigl(\prod_{i=1}^1 b_i\Bigr) = a_1 \cdot b_1. \] Clearly these are equal. So the statement holds for \(n=1\). ### Inductive Step Assume the statement is true for some positive integer \(n\). That is, assume \[ \prod_{i=1}^n (a_i b_i) \;=\; \Bigl(\prod_{i=1}^n a_i\Bigr)\,\Bigl(\prod_{i=1}^n b_i\Bigr). \] We must prove it for \(n+1\). Using the recursive definition of product on \(\{(a_i b_i)\}\): \[ \prod_{i=1}^{n+1} (a_i b_i) \;=\; \Bigl(\prod_{i=1}^{n} (a_i b_i)\Bigr)\;\cdot\;(a_{n+1} b_{n+1}). \] By the inductive hypothesis, the portion in parentheses is \[ \prod_{i=1}^{n} (a_i b_i) \;=\; \Bigl(\prod_{i=1}^n a_i\Bigr)\,\Bigl(\prod_{i=1}^n b_i\Bigr). \] Hence \[ \prod_{i=1}^{n+1} (a_i b_i) \;=\; \Bigl(\prod_{i=1}^n a_i\Bigr)\,\Bigl(\prod_{i=1}^n b_i\Bigr)\;\cdot\;(a_{n+1} b_{n+1}) \;=\; \Bigl(\prod_{i=1}^n a_i \cdot a_{n+1}\Bigr)\,\Bigl(\prod_{i=1}^n b_i \cdot b_{n+1}\Bigr). \] Using the recursive definition again, this is exactly \[ \Bigl(\prod_{i=1}^{n+1} a_i\Bigr)\,\Bigl(\prod_{i=1}^{n+1} b_i\Bigr). \] Thus the identity holds for \(n+1\). By mathematical induction, it is true for all positive integers \(n\). --- ## 3. Conclusion We have shown, using the recursive definition of product and induction, that for all \(n \ge 1\), \[ \boxed{\prod_{i=1}^n (a_i\,b_i) \;=\; \Bigl(\prod_{i=1}^n a_i\Bigr)\,\Bigl(\prod_{i=1}^n b_i\Bigr).} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.