Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.7 - Page 314: 1

Answer

**(a)** \(\displaystyle 1 + 2 + \dots + (k-1) \;=\; \frac{k(k-1)}{2}.\) **(b)** \(\displaystyle 3 + 2 + 4 + 6 + \dots + 2n \;=\; n(n+1) + 3.\) **(c)** \(\displaystyle 3\cdot 1 + 3\cdot 2 + \dots + 3\cdot n \;+\; n \;=\; \frac{3n(n+1) + 2n}{2} \;=\; \frac{3n^2 + 5n}{2}.\)

Work Step by Step

## (a) Sum \(1 + 2 + 3 + \dots + (k - 1)\) If \(k\) is an integer with \(k \ge 2\), then summing from \(1\) up to \((k - 1)\) is just the usual sum formula with \(n = k - 1\). Hence \[ 1 + 2 + 3 + \dots + (k - 1) \;=\; \frac{(k-1)\bigl((k-1)+1\bigr)}{2} \;=\; \frac{(k-1)\,k}{2}. \] --- ## (b) Sum \(3 + 2 + 4 + 6 + 8 + \dots + 2n\) Assume \(n \ge 1\). First note that the even integers from \(2\) up to \(2n\) sum to \[ 2 + 4 + 6 + \dots + 2n \;=\; 2\,(1 + 2 + 3 + \dots + n) \;=\; 2 \times \frac{n(n+1)}{2} \;=\; n(n+1). \] Therefore, \[ 3 + 2 + 4 + 6 + \dots + 2n \;=\; 3 \;+\;\bigl(2 + 4 + 6 + \dots + 2n\bigr) \;=\; 3 + n(n+1) \;=\; n(n+1) + 3. \] --- ## (c) Sum \(3\cdot 1 + 3\cdot 2 + 3\cdot 3 + \dots + 3\cdot n \;+\; n\) A common variation (one that uses the same sum formula) is to look at \[ 3\cdot 1 + 3\cdot 2 + 3\cdot 3 + \dots + 3\cdot n \;+\; n. \] Factor out the 3 from the first \(n\) terms: \[ 3\cdot 1 + 3\cdot 2 + \dots + 3\cdot n \;=\; 3\,(1 + 2 + \dots + n) \;=\; 3 \times \frac{n(n+1)}{2} \;=\; \frac{3n(n+1)}{2}. \] Then adding \(n\) gives \[ 3\cdot 1 + 3\cdot 2 + \dots + 3\cdot n \;+\; n \;=\; \frac{3n(n+1)}{2} + n \;=\; \frac{3n(n+1) + 2n}{2} \;=\; \frac{n\bigl(3(n+1) + 2\bigr)}{2} \;=\; \frac{3n^2 + 5n}{2}. \] (If your part (c) is phrased slightly differently, you can adapt the same idea: rewrite any sum of multiples of \(n\) or 3 in terms of \(1+2+\dots+n\) as needed.)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.