Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.7 - Page 314: 2

Answer

1. \(\displaystyle 1 + 2 + 2^2 + \dots + 2^{n-1} \;=\; 2^{\,n}-1.\) 2. \(\displaystyle 1 + 3 + 3^2 + \dots + 3^{n-1} \;=\; \frac{3^{\,n}-1}{2}.\) 3. \(\displaystyle 2 + 2^2 + \dots + 2^n \;=\; 2^{\,n+1} - 2.\) 4. \(\displaystyle \sum_{k=0}^n (-1)^k\,2^k \;=\; \frac{1 - (-2)^{\,n+1}}{3}.\) All of these follow directly from the geometric‐series identity \[ 1 + r + r^2 + \cdots + r^n \;=\; \frac{r^{\,n+1}-1}{r-1} \quad (r \neq 1). \]

Work Step by Step

\[ 1 \;+\; r \;+\; r^2 \;+\;\cdots\;+\;r^n \;=\; \frac{r^{\,n+1} - 1}{r - 1} \quad (\text{valid for }r\neq1). \] --- ## (a) A Sum of Powers of 2 **Problem:** For an integer \(n \ge 1\), find a closed‐form expression for \[ 1 \;+\; 2 \;+\; 2^2 \;+\;\cdots\;+\;2^{n-1}. \] This is just a geometric sum with common ratio \(r = 2\), starting at \(2^0=1\) and going up to \(2^{n-1}\). Using the formula: \[ 1 + 2 + 2^2 + \dots + 2^{n-1} \;=\; \sum_{k=0}^{n-1} 2^k \;=\; \frac{2^{\,n} - 1}{2 - 1} \;=\; 2^{\,n} \;-\; 1. \] --- ## (b) A Sum of Powers of 3 **Problem:** For an integer \(n \ge 1\), find a closed‐form expression for \[ 1 \;+\; 3 \;+\; 3^2 \;+\;\cdots\;+\;3^{n-1}. \] Here the common ratio is \(r = 3\), and we sum from \(3^0=1\) up to \(3^{n-1}\). Thus, \[ 1 + 3 + 3^2 + \dots + 3^{n-1} \;=\; \sum_{k=0}^{n-1} 3^k \;=\; \frac{3^{\,n} - 1}{3 - 1} \;=\; \frac{3^{\,n} - 1}{2}. \] --- ## (c) Another Sum of Powers of 2 (Starting at \(2^1\)) **Problem:** For an integer \(n \ge 2\), find a closed‐form expression for \[ 2 \;+\; 2^2 \;+\; 2^3 \;+\;\cdots\;+\;2^n. \] Note that this is \(\sum_{k=1}^n 2^k\). We can write \[ \sum_{k=1}^n 2^k \;=\; \bigl(\sum_{k=0}^n 2^k\bigr) \;-\; 2^0 \;=\; \bigl(2^{\,n+1} - 1\bigr) \;-\; 1 \;=\; 2^{\,n+1} \;-\; 2. \] Hence, \[ 2 + 2^2 + \cdots + 2^n \;=\; 2^{\,n+1} - 2. \] *(If instead you needed \(1 + 2 + 2^2 + \dots + 2^n\), that was part (a).)* --- ## (d) An Alternating Sum of Powers of 2 **Problem (typical form):** For an integer \(n \ge 1\), find a closed‐form for \[ 2^0 \;-\; 2^1 \;+\; 2^2 \;-\; 2^3 \;+\;\cdots\;+\;(-1)^n\,2^n. \] Observe this is a geometric series with first term \(a = 1\) (that is \(2^0\)) and common ratio \(r = -2\). Indeed, \[ \sum_{k=0}^n (-1)^k\,2^k \;=\; \sum_{k=0}^n \bigl((-2)\bigr)^k. \] By the geometric‐series formula, \[ \sum_{k=0}^n \bigl((-2)\bigr)^k \;=\; \frac{(-2)^{\,n+1} - 1}{(-2) - 1} \;=\; \frac{(-2)^{\,n+1} - 1}{-3} \;=\; \frac{1 - (-2)^{\,n+1}}{3}. \] Thus, \[ 2^0 \;-\; 2^1 \;+\; 2^2 \;-\; 2^3 \;+\;\cdots\;+\;(-1)^n\,2^n \;=\; \frac{1 \;-\; (-2)^{\,n+1}}{3}. \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.