Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.6 - Page 302: 14

Answer

See explanation

Work Step by Step

**Solution Explanation** We have a sequence defined by \[ d_n = 3^n \;-\; 2^n, \quad \text{for all integers } n \ge 0. \] We want to show it satisfies the recurrence relation \[ d_k = 5\,d_{k-1} \;-\; 6\,d_{k-2}, \quad \text{for all integers } k \ge 2. \] --- ### Step 1. Write down \(d_k\), \(d_{k-1}\), and \(d_{k-2}\) From the explicit formula \(d_n = 3^n - 2^n\), we have: \(d_k = 3^k - 2^k.\) \(d_{k-1} = 3^{k-1} - 2^{k-1}.\) \(d_{k-2} = 3^{k-2} - 2^{k-2}.\) --- ### Step 2. Verify the Recurrence Compute the right-hand side of \(5\,d_{k-1} - 6\,d_{k-2}\): \[ 5\,d_{k-1} - 6\,d_{k-2} \;=\; 5\bigl(3^{k-1} - 2^{k-1}\bigr) \;-\; 6\bigl(3^{k-2} - 2^{k-2}\bigr). \] Separate terms involving powers of 3 and powers of 2: \[ = \;5\,(3^{k-1}) \;-\; 5\,(2^{k-1}) \;-\; 6\,(3^{k-2}) \;+\; 6\,(2^{k-2}). \] 1. **Combine the powers of 3**: \[ 5\,(3^{k-1}) \;-\; 6\,(3^{k-2}) = 3^{k-2}\,\bigl(5 \cdot 3 - 6\bigr) = 3^{k-2}\,\bigl(15 - 6\bigr) = 9\,(3^{k-2}) = 3^{k-2} \cdot 3^2 = 3^k. \] 2. **Combine the powers of 2**: \[ -5\,(2^{k-1}) \;+\; 6\,(2^{k-2}) = 2^{k-2}\,\bigl(-5 \cdot 2 + 6\bigr) = 2^{k-2}\,\bigl(-10 + 6\bigr) = -4\,(2^{k-2}) = -2^{k-2}\,\cdot 2^2 = -2^k. \] Putting these results together, we get \[ 5\,d_{k-1} - 6\,d_{k-2} \;=\; 3^k \;-\; 2^k \;=\; d_k. \] Hence, \[ d_k = 5\,d_{k-1} \;-\; 6\,d_{k-2}, \] as required.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.