Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.6 - Page 302: 12

Answer

See explanation

Work Step by Step

**Solution Explanation** We have a sequence defined by the formula \[ s_n = \frac{(-1)^n}{n!}, \quad \text{for all integers } n \ge 0. \] We want to show that it satisfies the recurrence \[ s_k = \;-\;\frac{s_{k-1}}{k} \quad \text{for all integers } k \ge 1. \] --- ### Step 1. Write Down \(s_k\) and \(s_{k-1}\) From the given explicit formula: \(s_k = \dfrac{(-1)^k}{k!}\). \(s_{k-1} = \dfrac{(-1)^{k-1}}{(k-1)!}\). --- ### Step 2. Verify the Recurrence Compute \(-\dfrac{s_{k-1}}{k}\): \[ -\;\frac{s_{k-1}}{k} \;=\; -\;\frac{\displaystyle \frac{(-1)^{k-1}}{(k-1)!}}{k} \;=\; -\;\frac{(-1)^{k-1}}{k \,(k-1)!} \;=\; -\;\frac{(-1)^{k-1}}{k!}. \] Since \(-\,(-1)^{k-1} = (-1)^k,\) we get \[ -\;\frac{(-1)^{k-1}}{k!} \;=\; \frac{(-1)^k}{k!} \;=\; s_k. \] Hence, \[ s_k = \;-\;\frac{s_{k-1}}{k}, \] which completes the proof.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.