Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 5 - Series Solutions of Second Order Linear Equations - 5.1 Review of Power Series - Problems - Page 249: 16

Answer

$$\sum^{\infty}_{n=1} (-1)^{n+1}(x-2)^n $$ $$\rho = 1$$

Work Step by Step

1. Find the Taylor series: $$\frac{1}{1-x}= -1 + (\frac{1}{(-1)^2})(x-2) + (\frac{2}{(-1)^3})(x-2)^2\frac{1}{2!}+ (\frac{6}{(-1)^4})(x-2)^3\frac{1}{3!}+... $$ $$ \frac{1}{1-x}= -1 + (x-2) - (x-2)^2 + (x-2)^3 ... $$ $$ \frac{1}{1+x}= \sum^{\infty}_{n=1} (-1)^{n+1}(x-2)^n $$ 2. Use the ratio test to test for convergence: $$\lim_{n \longrightarrow \infty} \Bigg| \frac{ (-1)^{n+2}(x-2)^{n+1} } { (-1)^{n+1}(x-2)^n } \Bigg | = \lim_{n \longrightarrow \infty} \Bigg| x\Bigg| = (-1)(x-2)$$ - Therefore, the series converges absolutely when $-x +2 \lt 1$. $$\rho = 1$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.