Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 5 - Series Solutions of Second Order Linear Equations - 5.1 Review of Power Series - Problems - Page 249: 13

Answer

$$ln \space x =\sum^{\infty}_{n=1} (-1)^{n+1} \frac{(x-1)^n}{n} $$ $$\rho = 1$$

Work Step by Step

1. Find the Taylor series: $$ln \space x = ln \space 1 + (\frac 1 1)(x-1) + (-\frac{1}{1^2})(x-1)^2 \frac{1}{2!} + (\frac{2}{1^3})(x-1)^3\frac{1}{3!} + (- \frac{6}{1^4})(x-1)^4 \frac{1}{4!}... $$ $$ ln \space x = \sum^{\infty}_{n=1} (-1)^{n+1} \frac{(n-1)!}{n!} (x-1)^n = \sum^{\infty}_{n=1} (-1)^{n+1} \frac{(x-1)^n}{n} $$ $$ $$ 2. Use the ratio test to test for convergence: $$\lim_{n \longrightarrow \infty} \Bigg| \frac{ (-1)^{n+2} \frac{(x-1)^{n+1}}{n+1} } { (-1)^{n+1} \frac{(x-1)^n}{n} } \Bigg | = \lim_{n \longrightarrow \infty} \Bigg| (-1)(x-1)\frac{n}{n+1} \Bigg| = -x + 1$$ - Therefore, the series converges absolutely when $-x + 1 \lt 1$. $$\rho = 1$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.