University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises - Page 337: 33

Answer

$$\int^{\pi/2}_{0}\tan\frac{x}{2}dx=\ln2$$

Work Step by Step

$$A=\int^{\pi/2}_{0}\tan\frac{x}{2}dx=\int^{\pi/2}_{0}\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}dx$$ We set $u=\cos\frac{x}{2}$, which means $$du=-\frac{1}{2}\sin\frac{x}{2}dx$$ $$\sin\frac{x}{2}dx=-2du$$ For $x=\pi/2$, we have $$u=\cos\frac{\pi}{4}=\frac{\sqrt2}{2}$$ For $x=0$, we have $$u=\cos0=1$$ Therefore, $$A=-2\int^{\sqrt2/2}_1\frac{1}{u}du$$ $$A=-2\ln|u|\Big]^{\sqrt2/2}_1$$ $$A=-2(\ln\frac{\sqrt2}{2}-\ln1)$$ $$A=-2\ln\frac{\sqrt2}{2}=\ln\Big(\frac{\sqrt2}{2}\Big)^{-2}$$ $$A=\ln\frac{4}{2}=\ln2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.