University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises - Page 337: 14

Answer

$$\int_{-\pi/2}^0\Big(2+\tan\frac{t}{2}\Big)\sec^2\frac{t}{2}dt=3$$ $$\int_{-\pi/2}^{\pi/2}\Big(2+\tan\frac{t}{2}\Big)\sec^2\frac{t}{2}dt=8$$

Work Step by Step

Part a) $$A=\int_{-\pi/2}^0\Big(2+\tan\frac{t}{2}\Big)\sec^2\frac{t}{2}dt$$ We set $u=2+\tan\frac{t}{2}$, which means $$du=\frac{1}{2}\sec^2\frac{t}{2}dt$$ $$\sec^2\frac{t}{2}dt=2du$$ For $t=0$, we have $u=2+\tan0=2$ For $t=-\pi/2$, we have $u=2+\tan(-\pi/4)=2-1=1$ Therefore, $$A=2\int^2_1udu=2\times\frac{u^2}{2}\Big]^2_1=u^2\Big]^2_1$$ $$A=2^2-1=3$$ Part b) $$A=\int_{-\pi/2}^{\pi/2}\Big(2+\tan\frac{t}{2}\Big)\sec^2\frac{t}{2}dt$$ We set up the same substitution as in part a). For $t=\pi/2$, we have $u=2+\tan(\pi/4)=2+1=3$ For $t=-\pi/2$, we have $u=2+\tan(-\pi/4)=2-1=1$ Therefore, $$A=2\int^3_1udu=u^2\Big]^3_1$$ $$A=3^2-1=8$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.