University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises - Page 337: 18

Answer

$$\int^{3\pi/2}_\pi\cot^5\Big(\frac{\theta}{6}\Big)\sec^2\Big(\frac{\theta}{6}\Big) d\theta=12$$

Work Step by Step

$$A=\int^{3\pi/2}_\pi\cot^5\Big(\frac{\theta}{6}\Big)\sec^2\Big(\frac{\theta}{6}\Big) d\theta$$ $$A=\int^{3\pi/2}_\pi\frac{\sec^2\frac{\theta}{6}}{\tan^5\frac{\theta}{6}}d\theta$$ We set $u=\tan\frac{\theta}{6}$, which means $$du=\frac{1}{6}\sec^2\frac{\theta}{6}d\theta$$ $$\sec^2\frac{\theta}{6}d\theta=6du$$ For $\theta=3\pi/2$, we have $u=\tan\frac{(3\pi/2)}{6}=\tan\frac{\pi}{4}=1$ For $\theta=\pi$, we have $u=\tan\frac{\pi}{6}=\frac{\sqrt3}{3}$ Therefore, $$A=6\int^1_{\sqrt3/3}\frac{1}{u^5}du=6\int^1_{\sqrt3/3}u^{-5}du$$ $$A=6\times\frac{u^{-4}}{-4}\Big]^1_{\sqrt3/3}=-\frac{3}{2u^4}\Big]^1_{\sqrt3/3}$$ $$A=-\frac{3}{2}\Big(1-\frac{1}{(\sqrt3/3)^4}\Big)$$ $$A=-\frac{3}{2}\Big(1-\frac{1}{\frac{1}{9}}\Big)$$ $$A=-\frac{3}{2}(1-9)=12$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.