University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises - Page 330: 54


$$\int \frac{1}{x^2}e^{1/x}\sec(1+e^{1/x})\tan(1+e^{1/x})dx=-\sec(1+e^{1/x})+C$$

Work Step by Step

$$A=\int \frac{1}{x^2}e^{1/x}\sec(1+e^{1/x})\tan(1+e^{1/x})dx$$ We set $u=1+e^{1/x}$ Then $$du=e^{1/x}\Big(\frac{1}{x}\Big)'dx=-\frac{1}{x^2}e^{1/x}dx$$ $$\frac{1}{x^2}e^{1/x}dx=-du$$ Therefore, $$A=-\int\sec u\tan udu$$ $$A=-\sec u+C$$ $$A=-\sec(1+e^{1/x})+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.