University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 3 - Section 3.5 - Derivatives of Trigonometric Functions - Exercises - Page 151: 32


$\displaystyle p' = \frac{q*sec^{2}q -tanq(3q^{2}+1+qtanq)}{q^{2}secq}$

Work Step by Step

$\displaystyle p = \frac{3q+tanq}{qsecq}$ $\displaystyle p' = \frac{qsecq(3+sec^{2}q) - (3q+tanq)(secq+qsecqtanq)}{q^{2}sec^{2}q}$ $\displaystyle p' = \frac{q*sec^{3}q -3q^{2}secq*tanq - tanq*secq- qsecq*tan^{2}q}{q^{2}sec^{2}q}$ $\displaystyle p' = \frac{q*sec^{2}q -tanq(3q^{2}+1+qtanq)}{q^{2}secq}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.