University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 883: 5

Answer

$$3\sqrt 3$$

Work Step by Step

$\vec{r} (x,y) =x i+y j+(4-x-y) k$ $\implies \vec{r_x} \times \vec{r_y}=i+j+k$ $\implies |\vec{r_x} \times \vec{r_y}| =\sqrt {(1)^2+(1)^2+(1)^2}=\sqrt 3$ Now, $\iint_{S} F (x,y,z) \ d \theta=\int_{0}^{1} \int_{0}^{1} (4-x-y) \times \sqrt 3 \ dy \ dx \\=\sqrt 3\times \int_{0}^{1} [4y-xy-\dfrac{y^2}{2} ]_0^1 \ dx \\=\sqrt 3 \times \int_{0}^{1} 4(1-0)-x(1-0)-(\dfrac{1}{2}-0) \ dx \\=\sqrt 3 \times \int_{0}^{1} (\dfrac{7}{2} -x)] \ dx$ Now, we evaluate the integral $I=\sqrt 3 \int_{0}^{1} (\dfrac{7}{2} -x)] dx= 3\sqrt 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.