University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 883: 16

Answer

$$\dfrac{ 3 \sqrt 6- \sqrt 2}{3}$$

Work Step by Step

The surface integral can be found as: $dS= \sqrt {(f_x)^2 +(f_y)^2 +1} \ dy \ dx$ or, $dS=\sqrt {(2x)^2 +(1)^2 +1} \ dy \ dx =\sqrt {(4x^2+2)} \ dy \ dx $ Now, $$I=\iint_{S} G (x,y,z) \ dS=\int_0^1 \int_{-1}^{1} x \sqrt {(4x^2+2)} \ dy \ dx \\=\int_0^1 x \times \sqrt {(4x^2+2)} [y]_{-1}^1 \ dx \\=(2)(\dfrac{1}{8}_(\dfrac{2}{3}) [(4x^2+2)^{3/2}]_0^1 \\ \dfrac{6 \sqrt 6-2 \sqrt 2}{6} \\=\dfrac{ 3 \sqrt 6- \sqrt 2}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.