University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 883: 2

Answer

$24$

Work Step by Step

$\vec{r} (x,y) =x i+y j+\sqrt {4-y^2} k$ $\implies \vec{r_x} \times \vec{r_y}=\dfrac{y j }{\sqrt {4-y^2}} + k$ $\implies |\vec{r_x} \times \vec{r_y}| =\sqrt {\dfrac{y^2 }{4-y^2}+1}=\dfrac{2}{\sqrt {4-y^2}}$ Now, $\iint_{S} 6 (x,y,z) \ d \theta= \int_{1}^2 \int_{0}^3 6 (x,y,z) \ d \theta $ and $\int_{1}^2 \int_{0}^3 6 (x,y,z) \ d \theta =\int_{1}^2 \int_{-2}^{2} \sqrt {4-y^2} (\dfrac{2}{\sqrt {4-y^2}}) \ dy \ dx$ Now, we evaluate the integral $\int_{1}^2 \int_{-2}^{2} \sqrt {4-y^2} (\dfrac{2}{\sqrt {4-y^2}}) \ dy \ dx=24$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.