University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 883: 1

Answer

$$\dfrac{17 \sqrt {17}-1}{4}$$

Work Step by Step

Since, $\vec{r} (x,z) =x i+x^2 j+zk$ Now, $\vec{r_x} \times \vec{r_z}=2x i \ -\ j +0 \ k$ $\implies |\vec{r_x} \times \vec{r_z}| =\sqrt {4x^2+1}$ $I=\int_{0}^2 \int_{0}^3 6 (x,y,z) \ d \theta =\int_{0}^2 \int_{0}^3 x \sqrt {4x^2+1} \ dz \ dx$ or, $=\int_0^2 (3x \sqrt {4x^2+1} ) \ dx$ Set $4x^2+1 u \implies du=8x dx$ Now, $$I=\dfrac{3}{8} \int_{1}^{17} \sqrt u du \\=\dfrac{3}{8} \times [\dfrac{2}{3} \times (u)^{3/2}]_{1}^{17} \\=\dfrac{17 \sqrt {17}-1}{4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.