University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Section 15.6 - Surface Integrals - Exercises - Page 883: 3

Answer

$$\dfrac{4 \pi}{3}$$

Work Step by Step

$\vec{r} (u,v) =\cos u \sin v i+\sin u \sin v j+\cos v k$ $\implies \vec{r_u} \times \vec{r_v}=-\cos u \sin^2 v i-\sin u \sin^2 v j -\sin v \cos v k$ $\implies |\vec{r_x} \times \vec{r_y}| =\sqrt {(-\cos u \sin^2 v)^2 +(-\sin u \sin^2 v)^2 +( -\sin v \cos v )^2}=\sqrt {\sin^2 v(\sin^2 v +\cos^2 v) } \\ =\sqrt {\sin^2 v} \\=\sin v$ $\int_{0}^{\pi} \int_{0}^{2 \pi} \cos^2 u \sin^3 v \ du \ dv =(1/2)\int_{0}^{\pi} \int_{0}^{2 \pi} \cos^2 u \sin^3 v \ du \ dv \\=\dfrac{1}{2} \int_{0}^{\pi} [u+\dfrac{\sin 2u}{2} ]_{0}^{2 \pi} \implies \sin^3 v \ dv \\=\pi \times \int_{0}^{\pi} \sin^3 v \ dv \\= \pi \implies \int_{0}^{\pi} \sin v \times \sin^2 v \ dv=\pi \int_{0}^{\pi} \sin v (1-\cos^2 v) \ dv\\= \pi \implies [-\cos v +\dfrac{\cos^3 v}{3}]_0^{\pi} \\=\dfrac{4 \pi}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.