University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Section 14.4 - Double Integrals in Polar Form - Exercises - Page 778: 31


$\dfrac{3 \pi}{8}+1$

Work Step by Step

Re-arrange the integral as follows: $\int_{0}^{\frac{\pi}{2}} \dfrac{(1+\sin \phi)^2}{2} d \phi=\int_{0}^{\frac{\pi}{2}} \dfrac{(1+\sin^2 \phi+2 \sin \phi)}{2} d \phi$ This implies that $\int_{0}^{\frac{\pi}{2}} \dfrac{(1+\sin^2 \phi+2 \sin \phi)}{2} d \phi= (\dfrac{3}{4}+\sin\phi-\dfrac{\cos 2 \phi}{4}) d \phi|_{0}^{\frac{\pi}{2}}-\sin 2 \phi|_{0}^{\frac{\pi}{2}} $ Thus, we have $(\dfrac{3}{4}+\sin\phi-\dfrac{\cos 2 \phi}{4}) d \phi|_{0}^{\frac{\pi}{2}}-\sin 2 \phi|_{0}^{\frac{\pi}{2}}=\dfrac{3 \pi}{8}+1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.