University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Section 14.4 - Double Integrals in Polar Form - Exercises - Page 778: 21

Answer

$\dfrac{2(1+\sqrt{2})}{3}$

Work Step by Step

$\int^1_0 \int^{\sqrt{2-x^2}}_{x} (x+2y) \space dy \space dx = \int^{\pi/2}_{\pi/4} \int^{\sqrt{2}}_0(r \cos\theta+2 r \sin\theta) \space r \space dr \space d\theta $ or, $=\int^{\pi/2}_{\pi/4}[\frac{r^3}{3} \cos\theta+\dfrac{2r^3}{3} \sin\theta]^{\sqrt{2}}_0 d\theta $ or, $=\int^{\pi/2}_{\pi/4}(\dfrac{2\sqrt{2} \cos\theta}{3}+\dfrac{4\sqrt{2}}{3} \sin\theta) d\theta $ or, $=[\dfrac{2\sqrt{2}}{3} \sin\theta-\dfrac{4\sqrt{2}}{3} \cos\theta]^{\pi/2}_{\pi/4}$ or, $=\dfrac {2\sqrt 2}{3}+\dfrac{2}{3}$ or, $=\dfrac{2(1+\sqrt{2})}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.