University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Section 14.4 - Double Integrals in Polar Form - Exercises - Page 778: 14

Answer

$\dfrac{4}{3}$

Work Step by Step

Conversion of polar coordinates and Cartesian coordinates are as follows: a)$r^2=x^2+y^2 \implies r=\sqrt {x^2+y^2}$ b) $\tan \theta =\dfrac{y}{x} \implies \theta =\tan^{-1} (\dfrac{y}{x})$ c) $x=r \cos \theta$ d) $y=r \sin \theta$ Here, $x=r \cos \theta=2 \implies r= 2\sec \theta$ This information suggests the integral is as follows: $\int_0^{2\sec \theta} \int_{0}^{\frac{\pi}{4}} r^2 \sin \theta dr d\theta=(\dfrac{8}{3}) \int_{0}^{\frac{\pi}{4}} \sec^3 \theta d\theta$ Thus, $(\dfrac{8}{3}) \int_{0}^{\frac{\pi}{4}} \sec^3 \theta d\theta=(\dfrac{8}{3}) \int_{0}^{\frac{\pi}{4}} \tan \theta \sec^2 \theta d\theta$ or, $(\dfrac{8}{3}) [\dfrac{\tan^2 \theta}{2}]_{0}^{\frac{\pi}{4}}=\dfrac{4}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.